

Your Signature
\square

Student ID \#

Honor Statement

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: \qquad

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied materials are allowed.
- Only the TI 30X IIS calculators is allowed.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 7 pages, plus this cover sheet. Please make sure that your exam is complete.

Question	Points	Score
1	18	
2	10	
3	14	
4	10	
5	8	
Total	60	

1. (18 points) Indicate whether the given statement is true or false (2 pts) and give justification as to why it is true or false (2 pts).
a) [4 pts] If S is a subspace of \mathbb{R}^{8} and $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{7}\right\}$ is a basis for S, then for any $\vec{v} \notin S$, $\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{7}, \vec{v}\right\}=\mathbb{R}^{8}$.
b) [4 pts] Let B_{1}, B_{2}, and B_{3} be bases for \mathbb{R}^{n}. If C_{1} is the change of basis matrix going from B_{1} to B_{2}, and C_{2} is the change of basis matrix going from B_{2} to B_{3}, then $C_{2}^{-1} C_{1}^{-1}$ is the change of basis matrix going from B_{3} to B_{1}.
c) [4 pts] If W is a subspace of $\mathbb{R}^{9}, \operatorname{dim}(W)=3$, and $T: \mathbb{R}^{9} \rightarrow \mathbb{R}^{6}$ is a linear transformation such that $\operatorname{Ker}(T)=W$, then T must be onto.

Give an example of each of the following. If it is not possible write "NOT POSSIBLE", and give justification as to why.
d) [2 pt] A 2×2 matrix $A \neq I_{2}$ such that $A^{2018}=I_{2}$, but $A^{k} \neq I_{2}$ for all $k<2018$.
e) [2 pt] A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that range $(T)=\operatorname{ker}(T)$.
f) [2 pts] A basis B for \mathbb{R}^{3} such that every vector lies in the set $\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+2 c=0\right\}$
2. (10 points) Consider the matrix A, and its reduced echelon form below

$$
A=\left[\begin{array}{ccccc}
2 & -6 & 14 & 4 & 18 \\
-1 & 6 & -19 & 4 & -6 \\
-2 & 7 & -18 & 1 & -11 \\
3 & -8 & 17 & 3 & 18
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & -5 & 0 & -4 \\
0 & 1 & -4 & 0 & -3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

a) [4 pts] Find a basis for $\operatorname{Col}(A)$, the column space of A.
b) $[4 \mathrm{pts}]$ Find a basis for $\operatorname{Null}(A)$, the Null space of A.
c) $[2 \mathrm{pts}]$ Find a basis for $\operatorname{row}\left(A^{T}\right)$, the row space of A^{T}.
3. (14 points) a) [5 pts] Consider the set $S=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x^{2}+y^{2}+z^{2} \leq 1\right\}$. Determine if S is a subspace of \mathbb{R}^{3}. If it is, show that it is a subspace. If it is not, give justification as to why.
b) [5 pts] Let A be an $n \times n$ matrix and consider the set $S=\left\{x \in \mathbb{R}^{n}: A \vec{x}=\vec{x}\right\}$. That is, for some fixed matrix A, S consists of all vectors in \mathbb{R}^{n} that are fixed by A. Show that S is a subspace of \mathbb{R}^{n}. (Note: You may use the definition or any theorems from class.)
c)[4pts] Given the set S from part b), find a basis of S for the matrix $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
4. (10 points) a) [5 pts] Define linear transformations $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, S_{B}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, and $R=(T \circ S): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $T_{A}(\vec{x})=A \vec{x}$ and $S_{B}(\vec{x})=B \vec{x}$ for $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -3\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$. Show that T and S are invertible. (Note: Even though matrix B is the same as in the previous problem, they are unrelated.)
b) [5 pts] Determine a matrix C such that $R^{-1}(\vec{x})=(T \circ S)^{-1}(\vec{x})=C \vec{x}$.
5. (8 points) Consider the following 5×5 matrices:

$$
M=\left[\begin{array}{ccccc}
2 & 5 & \sqrt[5]{3} & 2 & \sqrt{2} \\
-3 & 8 & 3 & -6 & 1 \\
\pi & 52 & e & 3 & 5 \\
\sqrt{3} & 2 & 9 & 4 & 7 \sqrt{13} \\
5 & \pi^{4} & -1 & 3 & 2
\end{array}\right] \quad D=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right]
$$

An absolutely horrendous computation shows that M is invertible (You don't need to show this) so you may assume that M^{-1} exists. Define a new matrix $A=M D M^{-1}$. Is A invertible? If so, give a formula for A^{-1} as a product of matrices (You do not need to find an explicit formula for M^{-1}). Be sure to carefully explain your reasoning.

